2013年12月24日 星期二

201201-3016:37商業計算丙級學科文章選集


二、計算方法決定算癖的產生
光復以來,台灣珠心算教育延續日本教學系統,乘算使用破頭乘法(又稱尾乘法),也使用新頭乘法(又稱隔位乘法),後陸續改為看頭乘法。前兩種乘法的優點和筆算的計算順序較相近,適合國小學童學習,缺點為速度會稍慢。看頭乘法則相反,優點比前兩種乘法計算速度較快;缺點為和筆算的計算順序相反。(即看頭乘法為高位階實,法數相乘起算;前兩種乘法為先置被乘數於盤面上,計算時,從尾端棄子再乘以乘數)。近30 年來,中國大陸提倡一口清乘除算(根據進位律,輔以良好的心算能力,非使用基礎乘法表來運算),速度提昇非常驚人。
可媲美計算機,一題實法共11位的題型,在短短的3~5秒之間,即連算帶寫一併完成。這實在是珠算史上劃時代的創舉。只可惜適用於能長時間訓練及聰明肯苦練的選手。無法普遍適用於各階段孩童的學習。因此,本文討論的空間限於使用看頭乘法計算的算癖。
看頭乘法大致又分為先定位及後定位,先定位為先看出實數及法數的整數位數,於確定之位階開始計算,答數即按盤面上顯示直接寫答。而後定位則相反,先擇一固定位階(通常為個位數點),即開始計算,計算完畢再確定題目定位,然後寫答。另外在計算順序又小分為:
1. 較少位數乘以較多位數。 
        2.
較多位數乘以較少位數。
        3.
同方向且由後向前乘。
如此一來,並非實數便是被乘數,當然法數也非即是乘數。而是視學生選擇的順序,當然主動一方便是乘數,被動一方即是被乘數。
當我們清楚學生使用的計算方法及順序時, 我們便可協助其找出算癖,從而提醒學生注意謹慎,或要求更改計算習性。現在,我們依前述方法及順序來逐一解析優劣及了解算癖的解決方向,來提升學習的效能。
() 先定位:
優點:1. 計算於正確的位階,寫答時不需 再暫停定位。 2. 適用於省略計算,節省時間。 3. 較適合較大孩子學習。
缺點:1. 需注意乘數計算的每個位階,不得放錯。2. 於乘數有0或不滿10時,容易混淆位階。3. 級數越高,對於年幼或較不專注的學生容易有挫折感。
() 後定位:
優點:1. 每個題目固定位階,皆從同個起點開始計算,乘數有幾個數字,計算位階即依次遞減。 2. 計算時,較不易出錯,遇乘數有0或不滿10時,容易分辨。3.較適合年紀較小,或學習易分心的學生。
缺點:1. 寫答時,檢討定位較為費時,且容易寫錯位置。2. 須整個題目全部計算,無法使用省略算,較費時間。3. 較不利於乘心算的學習。
() 少位乘以多位,(較少位階的為乘數,較多位數的為被乘數)
例如: $ 27.58 x 3,460.19。我們將27.58視為乘數,而3,460.19為被乘數。此計算順序優點為可減少計算的步驟,由於以27.58為主動,因此該題目只須4個起算乘數即可,縮短轉換位階時間。但缺 點為學生須清楚位階的方向及順序的轉折, 使用此方法的錯誤率較其他方法為高。
() 多位乘於少位(較多位數的為乘數,較少位數的為被乘數)
同上例:$27.58 x 3,460.19,我們將3,460.19視為乘數,而27.58視為被乘數。此計算順序較少學生使用,因其位階轉換須有六次,較費時間。原則上位階轉換次數越多,自然錯誤率也會提高。唯一的優點為較適用於乘心算的運用。因為其計算時不需記憶較多位階的數字,適合心算能力稍弱的學生。
() 同方向相乘(即實數固定為被乘數,而法數固定為乘數)
同上例: $27.58 x 3,460.19,我們將實數27.58 視為被動(即被乘數),而3,460.19視為主動 (即乘數)。此計算順序的優點為每個題目皆為同方向相乘。學生較容易理解,自然錯誤率會較緩和,也因同時了解少位乘以多位及多位乘以少位的計算順序,可隨時依學生狀況來調整使用的方法。
當我們了解上述的方法及順序後便能夠了解學生算癖的產生及解決的方法。回到前文,我們提到最常見的第一種算癖: 即知其採用先定位法,且可能以少位乘以多位的順序來計算。首先我們將正確及計算的答案互減所得之餘數除以被乘數,所得之商即可找出位階錯誤(互換)的數字。
例題:$ 27.58 x3,460.19 正確答案為 $95,432.04,而計算答案為$ 93,625.82互減後餘數為$1,806.22。首先我們將其除以被乘數3,460.19 3位數字約522,再將522÷9(因任何數字換位或移位,皆能被9除盡),得58即可追溯乘數於計算58時皆多退位一階(因其計算答案較正確答案為少)。所以算癖為原乘數27.58誤算為27.058.
再例題:1,289.63 x 0.07065 正確答案為91.11236,而計算答案為: 98.6567。互減後餘數為7.54434,我們將其除以被乘數1,289.633位數字約585(因有四捨五入的處理,無法除盡)再將585÷965,即可追溯乘數於計算65時皆多進位一階(因其計算答案較正確答案為多)即原乘數0.07065誤算為0.0765
接下來,再解釋前文之第三種算癖: 當計算時,遇到不滿十須退後一位,之後再接上0,或5 時,也容易有位階上的誤判。通常正誤差數會較小,先將差數除以9後再除以任一乘數,即可找出算癖的源由。
例題:536 x 2,057正確答案為1,102,552,計算答案為1,359,052,互減之後餘數為2,565。首先我們將其÷9=285,再將285除以任一乘數試驗(包括5,36)。但要能除盡,並其答案為錯誤本身,因此找出算癖為5(285÷5=57)。所以,我們可了解學生將此題目536 x 2,057誤算為:(1) 5 x 2,570 (2) 3 x 2,057 (3) 6 x 2,057 三個組合步驟。其中第一個步驟是錯誤,同時可看出學生計算順序為以少位乘多位。
三、乘算省略算
省略算顧名思義即為節省計算過程,或省略不關乎答案的步驟而稱之。在乘算的題型中,有整數及小數2大部分,而小數又分名數及無名數之別。除了整數須將所計算之答數完整寫出外; 名數題型通常求至小數點以下第2位,而之後的位數先四捨五入再棄之。無名數題型也配合實法位數通常求至小數以下第3位或再多,而之後的位數也先四捨五入再棄之。如此一來,當我們在計算小數題型時,即可根據其條件而計算必要的過程,並省略不必要的步驟。
例題:$ 295.83 x 40.7869,如果全部計算完畢答案為 $12,065.988627,但其名數條件上我們寫答為$ 12,065.99,其後8627經四捨五入後棄之。
再例題:80.453 x 0.091562如果全部計算完畢答案為7.366437586但其無名數條件下,我們寫答為7.36644其後7586經四捨五入後棄之。
由上可知,乘算題型中,只要實法數的小數點之後位數相加,超過其計算條件位數2位以上,即可進行省略算,但前提為其應採用先定位法。
計算過程解析:
80.453 x 0.091562 ( 由後向前乘 )
(1) 80.453 x 0.09 = 7.24077 (因其計算條件為求至小數點以下第五位,故全部保留)
(2) 80.453 x 0.001 = 0.080453
(3) 80.453 x 0.0005 = 0.0402265 (因計算條件須至第六位四捨五入,且為減少誤差,所以多保留2位至小數點以下第七位為安全位數,故全部保留)
(4) 80.453 x 0.00006 = 0.00482718 但盤面上只須計算至0.0048271即可,"8"可不計算在盤面上。(捨棄"8)
(5) 80.453 x 0.000002 = 0.000160906 但盤面上只須計算至0.0001609即可,"06"可不計算在盤面上。(捨棄"06)
再將以上5個步驟組合即得答數為7.3664375 經四捨五入寫答案為7.36644
省略算在乘算題型中發揮的空間較小,而在除算題型中發揮的空間較大。但仍值得學習,以提升速度並節省空間。
一、常見的乘算算癖 在學習珠算乘算的過程中,常可發覺學生們所容易發生的錯誤(在此稱為算癖)。所有的算癖,其來有自,全部源於學生所使用的學習方法。因此,當我們在檢討學生經常產生的個別錯誤,應了解其計算方法為何?
www.abacus.org.tw/abacus_4/001/001-​87.asp - 庫存頁面

沒有留言:

張貼留言